> O 7Hbjbjjj ee7@r r t?LA^<<<]]]]]]]$Iac]<"<<<]y]<:]<]nW\yxv"RY6]^0A^YNddl\\&d\<<<<<<<]]<<<A^<<<<d<<<<<<<<<r
}: SHAPE \* MERGEFORMAT
COMPASSION, RESPONSIBILITY,ACCEPTANCE, FORGIVENESS, TRUST
Mathematics Policy
Our Vision
Burham Church of England Primary School is:
An Inclusive Community with
Enthusiastic Learners who
Fulfil their Individual Potential by being
Independent Thinkers who have
Enriching Relationships
Children, staff, parents, governors and volunteers all work hard at providing the right conditions and environment for all to succeed.
Our Christians Values
We have a Christian foundation and our explicit Christian values, which are woven into all we do, are:
Compassion
Responsibility
Acceptance
Forgiveness
and Trust
Introduction
Mathematics equips children with the uniquely powerful set of tools to help them understand the world. These tools include logical reasoning, problem solving skills and the ability to think in abstract ways.
Mathematics is important in everyday life. It is integral to all aspects of life and with this in mind we endeavour to ensure that children develop a healthy and enthusiastic attitude towards mathematics that will stay with them.
The National Curriculum 2014 order for mathematics describes what must be taught in each key stage. Burham CEP School follows the National Curriculum for mathematics 2014. This ensures continuity and progression in the teaching of mathematics.
Rationale
Mathematics provides a way of viewing and making sense of the world. It is used to communicate ideas and to tackle a range of practical tasks and real-life situations.
Mathematics is not only taught because it is useful. It should be a source of delight and wonder, offering pupils intellectual excitement and an appreciation of its essential creativity.
National Curriculum 1990
All school policies form a corporate, public and accountable statement of intent. As a primary school it is very important to create an agreed whole school approach of which staff, children, parents, governors and other agencies have a clear understanding. This policy is the formal statement of intent for mathematics. It reflects the essential part that mathematics plays in the education of our children. It is important that a positive attitude towards mathematics is encouraged amongst all our children in order to foster self-confidence and a sense of achievement. The policy also facilitates how we, as a school, meet the legal requirements of the recent Education Acts and the National Curriculum requirements.
Scope
This statement of policy relates to all children from Reception to Year 6, staff, parents and governors of Burham CEP School.
Principles
The principles of the Burham CEP School policy for mathematics are:
Policy and provision are evaluated and reviewed regularly.
Resources of time, people and equipment are planned, budgeted for and detailed when appropriate in the School Development plan.
The Governing Body of Burham CEP School discharges their statutory responsibility with regard to mathematics.
Cross-curricular links will be highlighted where appropriate.
Planning of mathematics ensures continuity and progression across all year groups and key stages.
Intent
General:
Although relating specifically to mathematics our aims for the subject are also in line with the schools general aims.
We aim to provide the children with a mathematics curriculum, which will produce individuals who are numerate, literate, creative, independent, inquisitive, enquiring and confident. We also aim to provide a stimulating environment and adequate resources so that the children can develop their mathematical skills to their full potential.
The National Curriculum 2014 sets out the aims of mathematics as:The national curriculum for mathematics aims to ensure that all pupils:
become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions
Specific:
Our children should:
Have a sense of the size of a number and where it fits into the number system.
Know by heart number facts such as number bonds, multiplication tables, doubles and halves.
Use what they know by heart to work out answers mentally.
Calculate accurately and efficiently, both mentally and with pencil and paper, drawing on a range of calculation strategies (see also the White Rose Maths Calculations Policies).
Make sense of number problems, including non-routine problems and recognize the operations needed to solve them.
Explain their methods and reasoning using correct mathematical terms.
Judge whether their answers are reasonable and have strategies for checking them.
Suggest suitable units for measuring and make sensible estimates of measurements.
Makes predictions from graphs, charts and tables.
Develop spatial awareness and an understanding of the properties of 2D and 3D shapes.
Spirituality and Christian Values
Spirituality is developed through mathematics wherever possible, following the aims of
our Vision. A sense of awe is encouraged when working with concepts such as
patterns in the environment and infinity, linking these to Gods wonderful world and love
for us all. Where appropriate, specific mention of our schools Christian values will be
made, such as solving money problems phrased around charity and giving rather than self-centered receiving.
Implementation
The children are provided with a variety of opportunities to develop and extend their mathematical skills in and across each phase of education.
Our Maths planning is based on Schemes of Learning from White Rose Maths and the NCETM (National Centre for Excellence in the Teaching of Mathematics) materials. This ensures a progressive and thorough curriculum in every year group. Teachers know which objectives must be taught and assessed in each year group and can follow progressive small steps to ensure pupils have a comprehensive understanding of Maths.
White Rose Maths promotes kinesthetic learning to ensure children acquire fluency of skills by introducing concepts in a practical/concrete way to progress to pictorial then abstract (C-P-A).
Teachers deliver one curriculum for all, providing opportunities to stay together and to work through new content as a whole group. Teachers teach the whole class, allow the children time to practice and bring the class back together to move on. Differentiated learning is provided through a selection of tasks to consolidate fluency, use skills to solve problems or use skills and reasoning skills to solve higher-level challenge problems. Teachers use their professional judgement to determine the activities, timing and organisation in each lesson in order to suit the teaching objectives and ensure children understand each small step.
For children who may struggle or possibly fall behind with parts of the curriculum, in class support is provided on a daily basis. Additionally, intervention and consolidation are provided to ensure they are ready for the next lesson. For SEND pupils a separate curriculum may be more appropriate. Interventions used are the NCETM (National Centre for Excellence in the Teaching of Mathematics) Ready to Progress resources and the White Rose Scheme of Learning.
Throughout KS1 and KS2, children have daily Maths lessons. In Early Years Foundation Stage (EYFS), children have 2 or 3 Maths mornings each week, enabling the Maths lesson to continue throughout the morning to ensure all children receive quality adult input and also opportunities to practice and consolidate their knowledge through a range of planned, child-initiated activities.
The teaching of mathematics at Burham Primary School promotes the use of mathematical vocabulary through encouraging children to explain their thinking, strategies and misconceptions during lessons to embed understanding.
During lessons, teachers provide in the moment marking and mini plenaries are held to discuss strategies and misconceptions. This provides the children with immediate feedback, time to correct and time to reflect on their learning. The children respond well to this immediacy.
Mathematics contributes to many subjects and it is important the children are given opportunities to apply and use mathematics in real contexts across the curriculum.
It is important that time is found in other subjects for pupils to develop their Numeracy Skills, e.g. there should be regular, carefully planned opportunities for measuring in science and technology, for the consideration of the properties of shape and geometric patterns in technology and art and for the collection and presentation of data in history and geography. (NNS)
Special Educational Needs and Disabilities (SEND)
Daily mathematics lessons are inclusive to children with special educational needs and disabilities. Where required, childrens provision maps incorporate suitable objectives from the National Curriculum for Mathematics or Development Matters and teachers keep these in mind when planning work. These targets may be worked upon within the lesson as well as on a 1:1 basis outside the mathematics lesson. Mathematics focused intervention in schools helps those children with gaps in their learning and mathematical understanding. These are delivered by the class teacher or trained support staff and overseen by the SENCO and/or the class teacher.
Within the daily mathematics lesson, teachers have a responsibility to not only provide differentiated activities to support children with SEND but also activities that provide sufficient challenge for children who are high achievers. It is the teachers responsibility to ensure that all children are challenged at a level appropriate to their ability.
Early Years Foundation Stage (EYFS):
We follow EYFS curriculum guidance for Mathematics. However, we are committed to ensuring the confident development of number sense and put emphasis on mastery of key early concepts. Children initially explore numbers to 10 and the development of models and images for numbers as a solid foundation for further progress.
See Curriculum Guidance for the Early Years Foundation Stage and the National Curriculum 2014.
Key Stage 1:
See the National Curriculum 2014.
Key Stage 2:
See the National Curriculum 2014.
Assessment:
Assessment is an integral part of the teaching process and we strive to make our assessment purposeful, allowing us to match the correct level of work to the needs of the children, thus benefiting them and ensuring confidence and progress.
White Rose Maths planning is taught in blocks. Prior to each block, the children complete a pre-assessment to inform planning. Objectives for each block are shared and discussed with the children during the block. This ensures they know their learning targets. Each seasonal term, pupils also complete the Puma Mathematics Assessment Progress in Understanding Mathematics Assessment (PUMA), which is a standardised, curriculum-related test developed to evaluate childrens progress in Maths. PUMA uses age-standardised scores, standardised scores, and the Hodder scale score to access the progress of children and help to generate accurate performance indicators that provide a true picture of pupil progress.
In Early Years, the children are assessed against the Early Years Foundation Profile and are awarded levels of Emerging, Expected and Exceeding, matched to their achievement of the assessed statements.
Each term, the Maths lead analyses the data for achievement across the school to identify the percentage of those working at expected, above expected and below expected. This enables SLT to identify groups of children who are at risk of underachieving, in which case, intervention strategies, programmes and support are implemented to support learning.
National Curriculum tests are used at the end of KS1 and 2; teachers use past and sample papers to inform their assessments as they prepare the children for these assessments.
As the curriculum is a Mastery curriculum, the children will start each year group as emerging and will progress to either expected or exceeding. The expectation is that 85% of children in each year group reach expected. Mastery booklets will be used by the children to consolidate and revise mathematical concepts throughout the year.
See the National Curriculum 2014 for definitions of short, medium and long-term assessment in Mathematics.
Performance Indicators:
Performance indicators, which are the criteria for success of the schools mathematics policy at Burham CEP School, are:
At KS1 pupils achieve expected or exceeding
At KS2 pupils achieve expected or exceeding
Children enjoy mathematics
Children talk confidently about what they are doing in mathematics
Role of the subject leader:
Please refer to the Teacher Training Agency (TTA): National Standards for Subject Leaders and to the job description.
The mathematics subject leader is responsible for coordinating mathematics through the school. This includes:
Ensuring continuity and progression from year group to year group.
Providing all members of staff with guidelines and a scheme of work to show how aims are to be achieved and how the variety of all aspects of mathematics is to be taught.
Advising on INSET to staff where appropriate. This will be in line with the needs identified in the School Improvement Plan and within the confines of the school budget.
Advising and supporting colleagues in the implementation and assessment of mathematics throughout the school.
Analysis of assessment data to provide areas to be targeted.
Assisting with requisition and maintenance of resources required for the teaching of mathematics within the confines of the school budget.
Role of Class Teacher:
To have high expectations for progression in the acquisition of mathematical skills with due regard to the National Curriculum for mathematics 2014.
To develop and update skills, knowledge and understanding of mathematics.
To identify INSET needs in mathematics and take advantage of training opportunities.
To keep on-going records.
To plan effectively for mathematics, liaising with the subject leader when necessary.
Resourcing:
Mathematics funding will be within the school budget plan for each financial year.
The mathematics leader and the leadership team will meet each spring term to review the effectiveness of the mathematics curriculum and to review the needs of mathematics. Resourcing, personal development and training needs will be discussed and agreed. All resources will be listed, stored safely, be easily accessible and kept in good condition.
Equal Opportunities:
We incorporate mathematics into a wide range of cross-curricular subjects and seek to take advantage of multicultural aspects of mathematics e.g. Islamic patterns in RE.
All children have equal access to the curriculum regardless of their gender. This is monitored by analysing pupil performance throughout the school to ensure that there is no disparity between groups.
Parental Involvement:
At Burham CEP School we encourage parents to be involved by:
Giving them the opportunity to come into school twice a year to discuss the progress of their child.
Inviting parents into school in the summer term to discuss the yearly report.
Inviting parents to curriculum sessions or circulating information via the termly newsletters when significant changes have been/ are made to the mathematics curriculum.
Encouraging parents to help with weekly homework and circulating information to help them achieve this.
Holding workshops for parents focusing on areas of mathematics when necessary.
Review:
This mathematics policy will be reviewed by the mathematics subject leader, following discussions with the head teacher and other colleagues. Any amendments will be presented to the whole staff and to the appropriate committee of the governing body before implementation.
Re-drafted March 2023
()8CWXklwx $ < 工嚇ynaSaSaSaSaSahY~hJ5OJQJaJ$hY~hJOJQJaJ$hY~hJOJQJhY~hJ5>*OJQJ$hY~hZCJ0OJQJaJ0mH sH hY~hJfOJQJ"hS5B*
CJOJQJaJpht(hY~hZ5B*
CJOJQJaJpht0jhY~hZOJQJUmHnHsH tH uhY~hZOJQJjhY~hZOJQJUWXklwx $ < = C
D
O
^
i
$a$gdJgdJgdi4gdJ$a$gdJ7$8$H$$a$gdZ D
E
O
P
^
_
i
j
y
z
~
^cıııııudSdBdB hY~h
YCJOJQJ^JaJ hY~h>/CJOJQJ^JaJ hY~hJfCJOJQJ^JaJ$hY~hJfCJOJQJaJmH sH *hY~hJf5>*CJOJQJaJmH sH $hY~hCJOJQJaJmH sH $hY~hJCJOJQJaJmH sH $hY~hJCJOJQJaJmH sH *hY~hZ5>*CJOJQJaJmH sH $hY~hZCJOJQJaJmH sH i
u
_F>
?
@
J
K
&'(34x
&Fgdkgdi4$a$gdJ>
?
@
J
K
[c(34JTIS[eCμjjUUj(hY~h3CJOJQJ^JaJmH sH (hY~h
YCJOJQJ^JaJmH sH (hY~h>/CJOJQJ^JaJmH sH (hY~hJfCJOJQJ^JaJmH sH $hY~hJfCJOJQJaJmH sH "hY~hJf5>*CJOJQJaJhY~hg!>*CJOJQJaJ hY~h
YCJOJQJ^JaJ hY~hJfCJOJQJ^JaJ3ABCJLU!"fNOYnSw
&FgdPU?
&Fgdk
&Fgdkgdi4
&FgdkCIJST2<"cdNOWXY]ѾiP;(hY~hJfCJOJQJ^JaJmH sH 1hY~h
YB*CJOJQJ^JaJnH ph)))tH 7hY~h
Y5B*CJOJQJ\^JaJnH phtH $hY~h
YCJOJQJaJmH sH $hY~h>/CJOJQJaJmH sH $hY~hOCJOJQJaJmH sH $hY~hJfCJOJQJaJmH sH -hY~hJf5>*CJOJQJ\aJmH sH -hY~hg!5>*CJOJQJ\aJmH sH ]e
iogi֬օrcTcEcEcr3"hY~hg!5>*CJOJQJaJhY~h>/CJOJQJaJhY~hJCJOJQJaJhY~hZCJOJQJaJ$hY~hZCJOJQJaJmH sH "hY~hZ5>*CJOJQJaJ(hPU?hJfCJOJQJ^JaJmH sH (hY~hJCJOJQJ^JaJmH sH (hY~hkCJOJQJ^JaJmH sH (hY~hJfCJOJQJ^JaJmH sH (hY~h>/CJOJQJ^JaJmH sH wa
e
cr!!O$&'z())9*gdg!gdi4
&Fgdkrv{ ! !)!4!y""""S$[$%%z%%%%&&7&Ʊu`uKKƜKƜuuƜ(hY~hj9CJOJQJ^JaJmH sH (hPU?hPU?CJOJQJ^JaJmH sH "hPU?CJOJQJ^JaJmH sH (hY~h}!CJOJQJ^JaJmH sH (hY~hg!CJOJQJ^JaJmH sH (hY~hJfCJOJQJ^JaJmH sH (hY~h>/CJOJQJ^JaJmH sH $hY~hJfCJOJQJaJmH sH "hY~hJf5>*CJOJQJaJ7&?&K&L&h&&&&&&&&&';'C'''E(R((((((())))>)b)c)o)))))))!*7*+֬֗֬֬֗֗֗֗֬m(hY~hOCJOJQJ^JaJmH sH (hY~hJfCJOJQJ^JaJmH sH (hY~hx|CJOJQJ^JaJmH sH (hY~h}!CJOJQJ^JaJmH sH (hY~hj9CJOJQJ^JaJmH sH (hY~hg!CJOJQJ^JaJmH sH (hY~h>/CJOJQJ^JaJmH sH )9*:*+++++s.t./////@1A11111111111222gd:Ngdi4+++++++,,^,h,i,w,--.)...>/F//////ӻӻ|gN1hY~hJf5>*CJOJQJ\^JaJmH sH (hY~hrCJOJQJ^JaJmH sH (hY~hx|CJOJQJ^JaJmH sH (hY~hBHCJOJQJ^JaJmH sH (hY~h4CJOJQJ^JaJmH sH .hY~h5>*CJOJQJ^JaJmH sH .hY~hBH5>*CJOJQJ^JaJmH sH (hY~h:NCJOJQJ^JaJmH sH //00@1a1m1}11111111111112222ӾөppX?1hY~hJf5>*CJOJQJ\^JaJmH sH .hY~hJf5CJOJQJ\^JaJmH sH "hY~h:N5>*CJOJQJaJ"hY~hJf5>*CJOJQJaJ(hY~h3CJOJQJ^JaJmH sH (hY~hJfCJOJQJ^JaJmH sH (hY~h4CJOJQJ^JaJmH sH (hY~h:NCJOJQJ^JaJmH sH .hY~h:N5>*CJOJQJ^JaJmH sH 222335566778899i:j:k:l:m::::+;W;r;;
&Fgd:Ngd:Ngdg!gdOgdi422222H3T3o3333334#444]5e55555566666녯s^I(hY~hj9CJOJQJ^JaJmH sH (hY~hPU?CJOJQJ^JaJmH sH "hg!CJOJQJ^JaJmH sH (hY~hg!CJOJQJ^JaJmH sH (hY~hJfCJOJQJ^JaJmH sH (hY~hx|CJOJQJ^JaJmH sH "hPU?CJOJQJ^JaJmH sH (hY~h4CJOJQJ^JaJmH sH (hY~hOCJOJQJ^JaJmH sH 6g7o77788888]9e9999::i:j:m::֬֗֗֗m[I"hY~h:N5>*CJOJQJaJ"hY~hx|5>*CJOJQJaJ(hY~h:NCJOJQJ^JaJmH sH (hY~h3CJOJQJ^JaJmH sH (hY~hwCJOJQJ^JaJmH sH (hY~h4bCJOJQJ^JaJmH sH (hY~hJfCJOJQJ^JaJmH sH (hY~hx|CJOJQJ^JaJmH sH (hY~hg!CJOJQJ^JaJmH sH ::;;2;8;;;;;;;;?????2@ׯxaJa4x*hY~hJf5CJOJQJ\aJmH sH -hY~h:N5>*CJOJQJ\aJmH sH -hY~hJf5>*CJOJQJ\aJmH sH $hY~hJfCJOJQJaJmH sH "hY~h:N5>*CJOJQJaJ"hY~hJf5>*CJOJQJaJ(hY~h:NCJOJQJ^JaJmH sH $hY~hx|CJOJQJaJmH sH $hY~h:NCJOJQJaJmH sH *hY~h:N5CJOJQJ\aJmH sH ;;;;K<L<<<=T>>>?????9@@@@JAKALAMAYAZAA
&Fgdr
&Fgdrgdi42@7@AAMAWAXAYAC
C C!C"CDDDDDDmF|FFGGG
GGYGZGH*H4H5H6Hȶڤȶȶȶڑ~n[$hY~hrCJOJQJaJmH sH hDCJOJQJaJmH sH $hY~huCJOJQJaJmH sH $hY~hCJOJQJaJmH sH "hY~hx|5>*CJOJQJaJ"hY~h:N5>*CJOJQJaJ"hY~hJf5>*CJOJQJaJ$hY~hJfCJOJQJaJmH sH $hY~h3CJOJQJaJmH sH !A C
CCC
C"C#CCCDDDDDDTEELFFGGGGGHH5H6H
&Fgdrgdi46H7Hgdi46H7HhY~hrCJOJQJaJ21h:pw. A!"#$%nSWufnʇ.0wnx
[PNG
IHDRsRGB@} pHYs+tEXtSoftwareMicrosoft Office5qVIDATxWcY'8gϜ935g{klVeeV."3gxG`xI@9@!$dp "BDsBO{pB'-prjpz't: N'tBh6On _]q܉zy~rNɝ8~B//77O}B/1On L': YM,V,-ih+jmI
>)hk@cbXXY!OcH15L*C8ypF6ZPᗈ
x`mumߴ&k$}.nv~̳_5
/_GoV
_"u8fvmiKx{6N -b\g/gUaue~AI5.KN43O#g}7ӹK ;0!o>&26.ە
rٟ4O-k Ot#j$.Ǣ39k N!NgjűU"C<[\{~%Bg{9(-W&>XEgqGpm?tVJ()o!j&G:+!3|l+;c;A*-c(I߯B;qXqOμE#H&1!K_M{_!/cgc<|*p3OcfYuV;l8sxo"/}my$_^F<p,]ߟC`$Ro]?Dq)]pcZ
N_&u?7ۢ< tJ}Q_́s"Aą8-i^]A+k'*
|B|_~iPӉ U+5W_?%њY~
-ƥ;$#J&q|1OX@[NҚNT"g
roo\Fup:u[Qo_TpvL<^7K+
HqYgqѣ~~2Q)'[ds~u\~̈+Iϕi݁LuӢ!dŅ~*}L;:
^'"xB(YNp
)G{??r=H,;
ZŔTSsw24uup8 ?iw]_D
{3pg_&4
*
6^PXǾyxBwb0}:s
K/j.ϡ?AlR0H0jE.qzt`pP)(A%@?W)=l V%,Se^10[2$Ɗ?\iv;v=_0rWv3 ~_4b9@%ts^EW?nx79q38&:31Edcj%>2
V\ٌe2եTߝq^1Ԝ|7-0OK7oނ7|+e(i0MN@ڏy"{Sξh0W#新8H^a7̪ Jc✑3Ⱦe U\qnYcKbm{>S끸kcŶo7kp]zsxCf5.G
3`5RCƯ.C+FҩTnuOq8YKF7bvL N7&-
@'3_8[o!PrSKF[:pG"˘iyfp#w)ޅO@Cv@e۷Q<sXg S.s+BQp>e ]6?_+
EAPy-^B/# "-;hgHVy4-+-6z|W^φAgkGכ6&"jx&bݍd\;5`;odAIp6F}%&b,b7.!7p[)EEDjQVH*PB[F%#oVodTU!'I5`$d_kz-')@foc?0Ad龾Iz@BkY'K/k; Sc:,cTBmչ9'SGq/nB.W5¨@q4ĵVD}++8#bd
ScnAy?dgK
UR?qe=v&n?fDCR)b.]Q݀u~ѫ>GYǑxW5aeMlbS
<E'[Rh1ۺK_!2eie;,VNln)*ﮭ8Ю4+ǧceBts*N&:p94;+y,5w6ѳnden@<i6~MKPիf @\Fۑq|؏}n
@w}.>c_ SC,P_m"QW |%9ν2ܿV[o):gV\`WgkY }#Rp;1R]yeM..~6'ahf,ԾHdT".j>)fj (
)`ɾL觼@W
)"ݮA-Z$ hs_@sE};Aº.Ւkn![7o38/ВEcjuڎw5ۧˮ~[QD8
?˸bI!˾7?Zp^|ȼ"$0[_f)iyfc\,/1a2g|KʱB
FZ9mE)E%ǛުA{Pr:06{H2&n3Q@ƟE?ٲt_x7U(C>n2p9 WQr7%Me!ο2yI=>Epor73EQX&0:!&\LMiVjU3lrKLKQ[9fOUhˬU<՛/Byx*si&*&7VW6#;RGSߐW >%!]dfWOI▴r߉(lmqU1ղ``Y?Be1 \sq
GSYUQ/WV0)V`bbHo^,.}vD AE^ɪcYd>Şr˰8={dJ^o:*+S#y@ev\R2髷98=QMde$kkDkP+{HP)ﵯ\2yE]D:6ԅHD>ak
²:v^
i@ԾK(5lhy5blUR"JK1="S/boC?Zٮ*:"W$cfҋJù'3}2Uj҂[s0
v-X6GUI(RP~v 2!(09jwxٟ;+J/,ZJ=.-e\Tg{ID&ԱO
y(chήE:K9jtwG^/ѤvXC<:fW}:joni+v`0n8,Vqˋ""0L5*QҠt}NdϲbBGZ j+}OՁf8,Dg`V (
4&kʮAuv+nvb@EWИr8
hIѧ#/TBc>F "
0~^$7=[г*-Ӫ03=f܍ ;d5D=.moP]lS|R9*7`^=653/A8&Ssڰnjb97-7MMUj/MZy
fIў]1q&q.p1;ݶ-4Ӧj$`"ɞhYÑlĻ`z M̋86zv;ZS0q9z'jsXyL愼
p62wDqr?lD~Cdz
P[y3_܊ɈavCXZQF=-ଂ[N6;u꛲kѐZysm@8⸆]k8vw+wԾQщ4uy~VlǻtG9-n/;^u8urͮד[1,4,?k|9<}3!Y`ڇԋhϋEWQ,-}hfg})m9h9
s20ŀLs)&aj`&b!UO@;2xN.J8V8NlD Ʀӡ~{ͧ`K\=ui}2FƞcZ1*s5 .dh̨Q|D>K-{eʚ3WSd4dg_x4dIB.YB1FO U79>}FV2j
ƜwA)K!l:
Ifgjs[6e0MS܂Rz2Jѵ6awNtaz՛eiahK.;g\En|#5mT}4ZZ2[$(x%a;,7Eν̣ Akm6afg3%C=3e<6=nk+{$m/a2玾W_-:Cb1,VzH5|KkiތV[=!ũ-^[
iײQ%1AInLyȩʮbD4ү 8J>
qN;q
s
7CPZϐ2$"֬m
%r+JMHi-RҮpIGOaՁ;ȑ=%E@P\g5rdC}p"^9]%(pA;i˿"BUmЪ
]av:{8,s[iJkO0jf+pm5Eב߳$pE$uuptԃ:((ET).l
\^eD:u,{VF1!s?ǔ\fn]\v[maRQ@9Ɋ00cLWnU&dv?H%¶x{99\F;6)2S[jh+oB,s=WdaA͋&_ हܣ͢UPG~?X.g;a*V]^~E8ɶN8 nK3mssذ}I:yH,S$P烠6ξA9zh?T-*5eWajE(6<wu&߆Ӆ*ⴥ4@dpep
@HAdgwbLɕxQifEz)1$ĳeQ&*PqpS@X6^EK; kꄬíHЕ]rDqQ9r\6(pϩuHzdCn%ZO&PF9.l
yfXw?5XtL(ѐȺQǡ!1_M4:?(MDRT7BG0E"ZwFŦ {^iG%)NgqZ9QA[ۙԘ^M}>Z3 ëswO@p&5p琕 @~~*<Û41p
ݹ4Q#WC5fߪM͕: drG''IUSC\ӈ;!LdGc?B9nL!jciZTtY*q[fjcJ01t|ze05FG\ 8,Q0YVdrd`a'ڣmOӮ7iydfbq{ztK*zZH9㋌k%wQ Kd9OԄ'j`YξF
&t
tc8I4Օú XxүG UFD
bKpٜXL#|W1cEZJ&@on~X[c/tNy^1aebfd݅PtY07vqGĲJqB t6̫W=F|M)PTorkPrmnj6ӶzIf}W`¸dq\PYDYq60h
kacIZU4&CU,dC=㾧wHPۈRƩ%oQd
gӊqXkb',,B98 x[xJK/G<їJTB!ࡅ" Ōa{rn6bkё~5͉8dr'&!&w_d&hg ziwŵz|ff!mcyǆ ha'<x!r,a_zdk|:k[pm8n7vdw>l&twX0ʴI* mhN+G=TkE&Xkd
K#(+DKV.\Q엄0W@RU.n IqV=NmKsO}10'?<"owM
RK 0JZqgCaRs 4M}OD?rq=aI,nFIkqh@ƌQƍ-V5
\Ёw^#FփlTP<>&R>7fQOk'QZmhk00bFGA'qx*[p
.["5Ble^ܟƽ8nVіZ|s;Sg>
C'zvaԞ]w=m:j2QᑾׁKVK!kO!o[kWUd^hD^(7*0jb1(Pú)`SѓI[OJ
RއB0uwt.̪̔zT?3WVO>2%
moϠMdg0I2(ȰVގe+Tz!ߎG{(%KR6٭v]F+a~<ɾ{E"E`onK`E
.Ƣ,
H6G'c(OHVv>,3k#+og@^F%3%i{ |i%h`B]~:}ΊfFeBS^8-p,da&Iň~"Cˡ N]D78ΠҚ:1)}0gBcT*zLnkfs!>vB1=?f].5EhN-@sr1>0ƌrd'@?k(34!nZcS~QPf0zDjݙyhϩppNg8+,LqluU}79x^j^y~ZbFxeX2-öH U+ko
"7=]#[)n@>UpN
Տ>a]Fəztck0.ZYَ&v>3̨#\u1/=E]+62VӁ{TVVc`:Lz&?ɼ~_gܮ|"/19 NR؆#ӆ{kZ_0Wnt>MGOn9: _
<.|DhmmÍM6jA Tb tJ]]nE|UPpRrQS-IP^#M8ދxU8}Ed]T)DGz!_*lKFLήAip&M]{)*.6VY̳s+VցnT$铅iG!jAϪE[A#,yȫyul5E8&C̆I:䔢*0߸3QΫ@~4J-/mB-U!,#;3뻼F8ߕ 27o0PVGnPXF{nd6%٣2NG@۽wڜb]CTu5B8z+2
K@Yt!\YT"Ac"Jҍ}xP;*0?ty7"{&$^Csx0o_bbWd_G^HKFH-L7PfԼHVϡ.:144ɮen23_07*Gђ\;+!_D%Iѭ(I2 {0L>aVr)"ŢbV:E0FpT4IVńˉv}CQCXMmnT 먊_6P[J Q蛄;qh4ܴ6eё{yMA$HCÃ
C0eY+F{İb4q17Ic݉:
ᩐ7.%fzNq$ }d}Rtt URԄCqS5'p;Vʌ<1#݈DgOEaSz.bN5Y3D!11!7 %wB\A}7氩?YFMh(DILE/.(EO>/#v3Z56'\mʧG&~<{G[r)]NEUXۄף%.ːI%e%\pJ"!hĂ\0#o] S*l"͌ljG}HDAe69b{;l1b.2=FԥbBe:P)n7[Q 9-DOE3C;,ŴpMOY9>}59aY9(8B䄔"@t$iGom$Iio@Hʚ[ƊJcQbH'=ןL4"a4")F TF`\2%іYlAh֡dL ,d5BBCO1K
uKn<[ph9yufƌ6Ȧ
ݝ)DW=Bn&1Ko^L:^Ђ4_]B+2#eY,۠@AOryضcT$W#\cǦdZH1`?Ȁ*+PIԈW!$(k06&butlp^)CPWI #rڭ4W!T
'=3s~YېVkDb]Ė1dj)Qwq=
@6(cqks0/fd_ mٲHӖSJpsʉэON,'|
%N[Ԍ]|3GfP61&Jٷl]VAta"b ¯dWBtkB;).iuP!nDvlrnţ0"yahI#
,L>-xDNyPFLM.52[VYmX/nCWv5MUbUDeۊ{aT4x/zQUKN0`^\'EƗw m@Sb).'U7[i0VPWXeƫe]9N/M,PzWXX1V+o!t
}Ol-d34L6+;5wwxt oXmtNJ,A@kT2,ܰn__bZgBK:Z @ԧӹn*{յMDcC14+GȻwӄ+Q(Og*w 9,'4gDo]AP5ayl~5f<4n9lG%PB\75y#%-0чZ=ɼV"c{S~Kv=hr4q(6',l3V&,W'h`BQSEJ{)^\>&c "akxbX>SCR9(u(,D_)roD@qq^ NE'&<4gT1-A)QFGwktՄ\tT!
e!Yh$x#=X>Wl85p\B}$gn+pO
I"2Y\pӑp'.F9\X6Aw0[Uy
n!#һqDcP8$-RbK2Y&'-c-mpu
, e,Z1DVI5'5`*l"3]x')+w5tp0)Y#_vz0=0"QA&g]p2_Cg~
>M7*#YjK A#}Vpqӆ _2}\qJ":JaqUezo;*%4Qt:3wQVw+6;Fx*Ggz)u]Ēbڞ^D39$®?}뷑u1q碈vR:]fY]Uz7mCTh;mֵEQXLȵ`zVV=xrL_ۅu5%rHzsW35Z6~CL4]vJ j.SpWhH+FUr)Fz%LǒDDd"|UK
,4!"%eߣFg^- Efbuq kR.NPi,8wW}G6"T'2PTbUH"j'7撱y7\kr|/든>plW݅dҹ+p7FM}C>
AXՆ n?,&IQ_dyͮGMH:&x Moc\C}n`%W[2]r܈Bu@"vCʦ)o{!;]>V|mk"`+ѹ@ʹd
bJ&fa3{rR2cE) A_4g1g:N)۔y+&O]oL+&b75n_%`hmz%[АX|2qFyW5c&W3ZF?r5fȹ\4'lqUTE1eղ
Y|3%i7#R(]dD~t
z0?Ѩ<
콸Oڴ
20yY
GHH0,c#Z$AkR>*r9ǿʱ8umoXgAKanRPkҙ(+OEl۬3 /ńѪNzPL)i:KPSЎJ<(CuJjs[QZ"rz0Y¬R!(v[$@'TЁijmD}n2Fje0zpL]y"FS';{pnaݧFׇa|)-o' F*Ʀ3yR
n#|IxȾn1c1GahƂv~O`xpAlc~iV*VPwpuppl;_U,84(i2aˢ.dE7ifD
4BXLd+B 橩AQ
HcO,Z\(+jq1LwAh.ic5IT9{@?#sl
d}
ͨI
CdVoV7`3ۘ@:2vj!*06q)S:NdhaUD4kf%{ք\yz/ƪIxVK(/7C_zY>C uXlpZ,,2siU=$b!t"o]C_*yB(zYsH8J&
L?.NTؼ̤5T &9oBmϢQY)A'wmU\tv(03=@V
÷q౸#Kb;%D
0ST2Dy{j1,P0q
@MnWr*/V5nZ8ofؔmky@p \ض~l/DgIENDB`Dd
D
3@@"?w666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@6666_HmH nH sH tH @`@NormalCJ_HaJmH sH tH \@\ Heading 1$$7$8$@&H$a$CJ0OJQJaJ0mH sH VV Heading 2$7$8$@&H$CJOJQJaJmH sH XX Heading 3$7$8$@&H$5OJQJ\^JmH sH DA DDefault Paragraph FontViV
0Table Normal :V44
la(k (
0No ListN>@NTitle$7$8$H$a$CJ0OJQJaJ0mH sH HH
Y0Balloon TextCJOJQJ^JaJR/R
Y0Balloon Text CharCJOJQJ^JaJtH H`"Hi4
No SpacingCJ_HaJmH sH tH PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭VGRU1a$N% ʣꂣKЛjVkUDRKQj/dR*SxMPsʧJ5$4vq^WCʽD{>̳`3REB=꽻UtQy@\.X7<:+&
0h@>nƭBVqu ѡ{5kP?O&CנAw0kPo۵(h[5($=CVs]mY2zw`nKDC]j%KXK'P@$I=Y%C%gx'$!V(ekڤք'Qt!x7xbJ7 oW_y|nʒ;Fido/_1z/L?>o_;9:33`=S,FĔ觑@)R8elmEv|!ո/,Ә%qh|'1:`ij.̳u'kCZ^WcK0'E8S߱sˮdΙ`K}A"NșM1I/AeހQתGF@A~eh-QR9C 5
~d"9 0exp<^!~J7䒜t L䈝c\)Ic8E&]Sf~@Aw?'r3Ȱ&2@7k}̬naWJ}N1XGVh`L%Z`=`VKb*X=z%"sI<&n|.qc:?7/N<Z*`]u-]e|aѸ¾|mH{m3CԚ.ÕnAr)[;-ݑ$$`:Ʊ>NVl%kv:Ns_OuCX=mO4m's߸d|0n;pt2e}:zOrgI(
'B='8\L`"Ǚ
4F+8JI$rՑVLvVxNN";fVYx-,JfV<+k>hP!aLfh:HHX WQXt,:JU{,Z BpB)sֻڙӇiE4(=U\.O.+x"aMB[F7x"ytѫиK-zz>F>75eo5C9Z%c7ܼ%6M2ˊ9B"N
"1(IzZ~>Yr]H+9pd\4n(Kg\V$=]B,lוDA=eX)Ly5ote㈮bW3gp:j$/g*QjZTa!e9#i5*j5öfE`514g{7vnO(^ ,j~V9;kvv"adV݊oTAn7jah+y^@ARhW.GMuO
"/e5[s`Z'WfPt~f}kA'0z|>ܙ|Uw{@tAm'`4T֠2j
ۣhvWwA9ZNU+Awvhv36V`^PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!g theme/theme/theme1.xmlPK-!
ѐ'
theme/theme/_rels/themeManager.xml.relsPK]
7@x C]7&+/26:2@6H7H%')+,./124568;i
w9*2;A6H7H&(*-0379:7@_l,b$ufnʇ.0wnx
[[W4x@(
b
3@@A C"?B
S ?7@
t//9@)Br9@36@9@6@9@0/VΨ:
t4T跖phM*J&RoLe-B$6a'ڶ#'>
2*+Ɗ#"Ty0X{1|X?1;^5~HBx&Cb* Ed7sK|:0P Q6_dY":X$[F(cQ_XȻ!mbc*#}^Lh^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h||^|`OJQJo(hLL^L`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(^`CJOJQJo(^`CJOJQJo(pp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(h^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(hHh^`OJ QJ ^J o(hHoh ^ `OJ
QJ
o(hHhx^x`OJQJo(hHhH^H`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h||^|`OJQJo(hLL^L`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(^`CJOJQJo(^`CJOJQJo(pp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(h^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(h^`OJQJo(hHh^`OJ QJ ^J o(hHohp^p`OJ
QJ
o(hHh@^@`OJQJo(hHh^`OJ QJ ^J o(hHoh^`OJ
QJ
o(hHh^`OJQJo(hHh^`OJ QJ ^J o(hHohP^P`OJ
QJ
o(hHh^`OJQJo(h^`OJ QJ o(ohpp^p`OJ
QJ
o(h@@^@`OJQJo(h^`OJ QJ o(oh^`OJ
QJ
o(h^`OJQJo(h^`OJ QJ o(ohPP^P`OJ
QJ
o(7sK#} EP QcQ_'#'{1e-B$"Ty0Tp1;*+:
&C$[!mbRM*5~HB0/_dY C!_M&%Owi43rZ%#>/PU?=FBH:NfRS
Y/fZ4bJfu_zx|Y~j9JhdkDc}!4|g!7@9@@7@@UnknownG.[x Times New Roman5Symbol3..[x ArialCNComic Sans MS9GaramondcTimesNewRomanTimes New Roman5..[`)TahomaC.,.{$ Calibri Light7..{$ Calibri?= .Cx Courier New;WingdingsA$BCambria Math"qhLgG[g 6 t 6 t20@@KqHP $P32!xx8YKing s Farm Primary SchoolMrs NettleinghamClare Nettleinghaml
Oh+'0 0<
\ht
Kings Farm Primary SchoolMrs NettleinghamNormalClare Nettleingham12Microsoft Office Word@t{#@
J`@nT@px 6
՜.+,0hp|
t @Kings Farm Primary SchoolTitle
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefgijklmnoqrstuvwxyz{|}~Root Entry Fyx@Data
h1Tablep
eWordDocument
SummaryInformation(DocumentSummaryInformation8MsoDataStoreyxyxWWTPLSZFZJWY==2yxyxItem
PropertiesUCompObjr
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q*